Pontifícia Universidade Católica do Rio de Janeiro

Gás Natural no Amazonas: Estudo Socioeconômico e Ambiental

Estrutura do Estudo

- 1. Evolução da indústria de gás natural no Amazonas
- 2. Análise de impactos ambientais
- 3. Análise de impactos socioeconômicos
- 4. Avaliação dos impactos ambientais, econômicos e sociais da não utilização do gás natural no Amazonas

Evolução da Indústria de Gás no Amazonas

O Estado do Amazonas, localizado na região Norte do Brasil, possui características específicas e exige soluções energéticas e logísticas adaptadas à sua realidade territorial e socioeconômica

- Área territorial: Cerca de 1,5 milhão de km² (maior estado brasileiro em termos de área)
- Floresta Amazônica: Elevada sensibilidade ambiental e condições de isolamento relativo em relação aos grandes centros urbanos
- População: Aproximadamente 4,3 milhões de habitantes (estimativas de 2023), concentrada em Manaus, com cerca de 2,2 milhões de habitantes
- Desenvolvimento econômico: A principal fonte é a Zona Franca de Manaus (ZFM), que atrai indústrias de diversos setores, especialmente eletrônicos e bens de consumo
- Infraestrutura de transporte: Malha rodoviária limitada em relação ao tamanho territorial, devido à geografia da região, com muitas áreas do interior acessíveis apenas por vias fluviais ou aéreas
- Infraestrutura energética: Caracterizada pelo baixo nível de integração com o restante do país e forte dependência dos derivados de petróleo

Foto: Manaus/AM (Créditos: iStock)

O mercado de gás natural no Amazonas é concentrado na demanda termelétrica de Manaus, que consome 5,5 milhões de m³/d, abastecida pela logística de transporte regional

Polo Urucu: responsável pelo abastecimento de

Manaus/AM, via gasoduto

Polo Azulão: responsável pelo abastecimento de Boa

Vista/RR, via transporte rodoviário de GNL a granel

Gasoduto Urucu-Coari-Manaus (663 km)

GNL a granel (rodoviário)

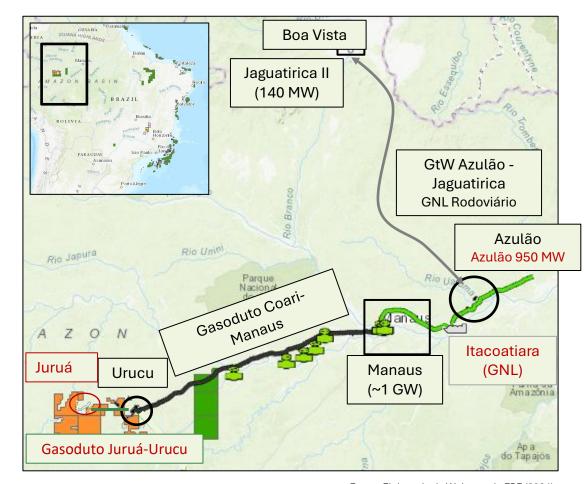
Demanda termelétrica:

Manaus: ~1 GW

Coari-Manaus: ~60 MW

Boa Vista: ~140 MW (UTE Jaguatirica II)

Demanda Industrial (Manaus):

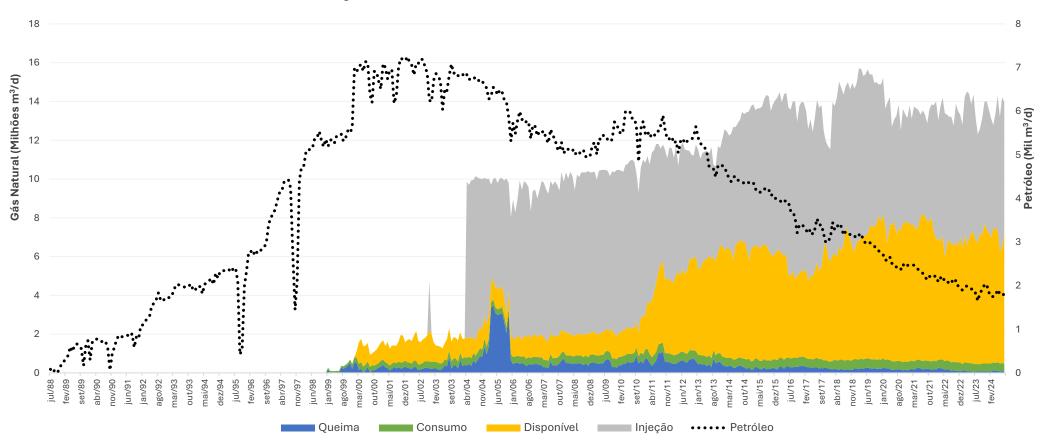

Corresponde a 6% do consumo local de gás natural

Projetos indicativos de destaque:

- Campo de Juruá + Duto escoamento (ENEVA)
- Gasoduto autorizado pela ANP (TGM)

Azulão 950 (ENEVA)

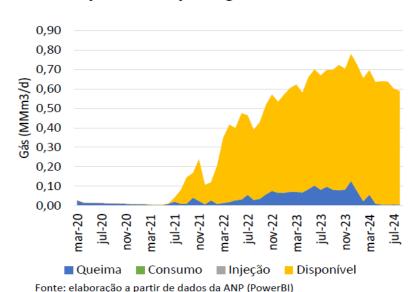
Terminal GNL de Itacoatiara


Fonte: Elaborado de Webmap da EPE (2024)

O Polo de Urucu, atualmente em fase madura, apresenta declínio na produção de petróleo. Cerca de metade do gás natural produzido é reinjetado, enquanto a oferta ao mercado permanece estável, em torno de 6 milhões de m³ por dia

Produção de Gás Natural e Petróleo no Polo Urucu

Fonte: Elaboração a partir de dados da ANP (Anuário Estatístico e PowerBI)


O Polo Azulão representa a nova fronteira para a expansão do setor de gás natural no Amazonas. Atualmente, toda a produção é destinada ao abastecimento da UTE Jaguatirica II, em Roraima, por meio de transporte de GNL

- O Polo Azulão é desenvolvido sob o modelo *Reservoir-to-Wire*, que inclui uma planta de liquefação e o transporte de GNL por caminhões até a UTE Jaguatirica II (141 MW) em Boa Vista (RR). Em 2023, foram abastecidos 240 milhões m³ de gás (657 mil m³/dia).
- O projeto contribui para a redução de 36% das emissões de CO₂ e 38% dos custos da geração elétrica no sistema isolado (MME, 2021).
- Como perspectivas futuras, o projeto Azulão 950, da ENEVA, prevê um investimento de R\$ 5,8 bilhões na construção das UTEs Azulão I e II, totalizando 950 MW de potência instalada.

Evolução da Produção de gás no Polo Azulão

Carregamento de
GNL Equefação Unidade de Tratamento
Pátio de Carretas Tarrespera
GNU

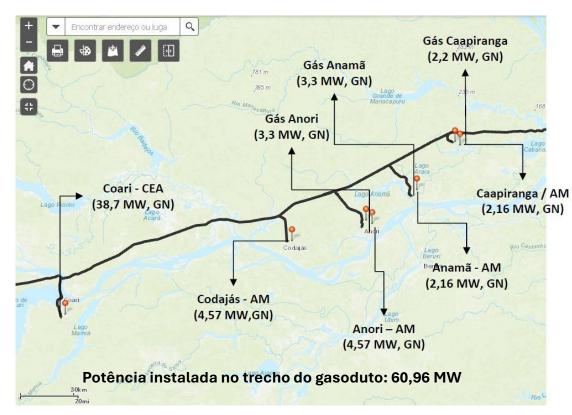
Autogeração e
Utilidades

Area de atrafiação do Unidade de Tratamento
Primário (UTP) o Clusters

Azulão: Primeira produção comercial de gás natural da Bacia do Amazonas (620 mil km² de área) (MME, 2021)

UTE Jaguatirica II (MME, 2021)

O estado do Amazonas ainda possui um relevante potencial gasífero inexplorado, especialmente nas Bacias do Solimões e do Amazonas, que podem impulsionar a expansão da oferta e a integração energética regional



O gasoduto Urucu-Coari-Manaus é o principal eixo da logística de gás natural no Amazonas, sustentando a geração elétrica, o abastecimento urbano e a segurança energética regional

- O Gasoduto Urucu-Coari-Manaus (663 km) foi inaugurado em 2009, com investimento total de R\$ 4,5 bilhões (US\$ 2,25 bilhões em 2009) pela Petrobras
- Permite o escoamento da produção de gás natural de Urucu até Manaus, com o objetivo de introduzir o gás na matriz energética do Amazonas, focando principalmente na conversão de termelétricas a óleo para uma fonte menos poluente e mais econômica
- A infraestrutura também viabilizou a construção de novas termelétricas a gás natural, contribuindo para aumentar a garantia do suprimento de energia na Região Metropolitana de Manaus
- Com a chegada do gás natural em Manaus a partir do gasoduto de transporte, a concessionária estadual de gás canalizado, Cigás, implementou um programa de desenvolvimento da sua rede de distribuição, com a construção de 280 km de gasodutos e investimentos de cerca de R\$800 mil. Isso resultou no desenvolvimento do mercado local, com a conversão da demanda industrial e termelétrica para gás natural e a expansão da demanda residencial e de GNV

Fonte: Webmap EPE

A geração termelétrica é o maior segmento de consumo de gás natural no Amazonas, com 4,4, milhões m³/d em 2023...

12 UTES a gás natural

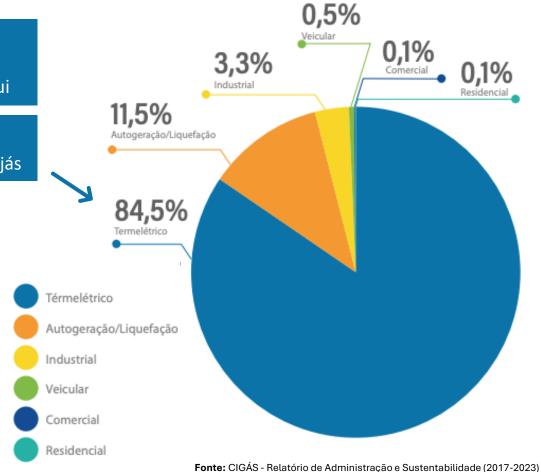
Total atendido pela Cigás

7 unidades em Manaus

UTEs Cristiano Rocha, Gera, Jaraqui, Manauara, Ponte Negra, Mauá 3 e Tambaqui

5 unidades no interior

UTEs Anamã, Anori, Caapiranga, Coari e Codajás


Perfil da geração elétrica no Estado do Amazonas

O Amazonas possui 97 sistemas isolados, que atendem uma população de 2 milhões de habitantes.

Somente 7 destes sistemas tem previsão de interligação ao SIN no período entre 2023 a 2025.

O Amazonas tem 169 unidades de geração elétrica (2,15 GW). Desse total, o parque termelétrico possui 148 unidades (1,86 GW).

- 122 a diesel (614 MW)
- 3 a óleo combustível (184 MW)
- 18 a gás natural (1,06 GW)

... mas os segmentos não-termelétricos vêm crescendo rapidamente, impulsionados pelo aumento do número de consumidores nos setores residencial e comercial

Demanda de gás natural por segmento de consumo (2023, não-termelétrico)

Autogeração / Liquefação

- 594 mil m³/dia
- Demanda de energia elétrica em Roraima é a principal razão para o aumento do consumo de gás natural neste segmento

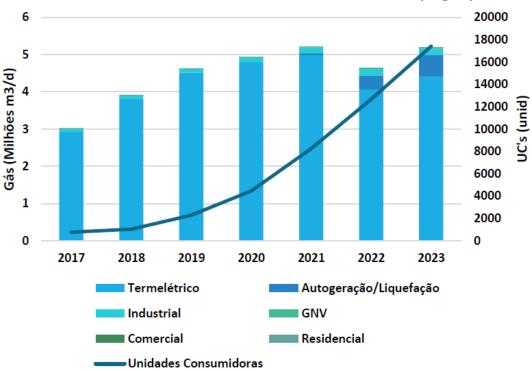
Industrial

- 172,2 mil m³/dia
- Destaque para empresas do Polo Industrial de Manaus (não inclui a REAM)

Veicular (GNV)

• 25,5 mil m³/dia

Comercial


• 5,6 mil m ³/ dia

Residencial

- 2,9 mil m³/dia
- 2023 ultrapassou a marca de 7 mil unidades consumidoras

Estimativa 2024: 21,14 mil unidades consumidoras (+ 18% em relação a 2023) e mais 3,6 mil novos usuários conectados à rede de distribuição

Demanda de Gás no Estado do Amazonas (Cigás)

Fonte: elaboração a partir dos dados da Cígas (Relatório de Administração e Sustentabilidade e Excel)

Análise dos Impactos Ambientais

O Amazonas enfrenta grandes desafios para adotar fontes renováveis de energia, como biomassa, solar e eólica. Nesse contexto, o gás natural se destaca como uma alternativa menos poluente e viável, trazendo benefícios relevantes para a segurança e sustentabilidade energética da região

O PNE 2050 reconhece vários desafios para adoção de fontes renováveis de energia na região amazônica, como:

- Elevada sensibilidade ambiental em razão da floresta amazônica e a presença de áreas indígenas e de preservação ambiental
- Dificuldades logísticas para a implementação de infraestruturas energéticas, como linhas de transmissão
- Elevados custos econômicos para o desenvolvimento de projetos

Energia Eólica: Sem potencial relevante no Amazonas; desafios tecnológicos para sistemas isolados devido à variabilidade da produção

Energia Solar: Construção de usinas exige terraplanagem, impactando ecossistemas; fator de capacidade inferior a outras regiões do país devido à alta umidade e nebulosidade

Usinas Hidrelétricas: Impactos ambientais significativos, incluindo alagamento de áreas, perda de habitats, deslocamento de populações e alteração do regime hídrico dos rios

Biocombustíveis: Risco de desmatamento para expansão de culturas energéticas; conversão de terras naturais em monoculturas; redução da biodiversidade; contaminação do solo e da água por fertilizantes e pesticidas

Grande parte do potencial inventariado de fontes renováveis (em particular hidrelétricas) está localizado em ambientes de elevada sensibilidade ambiental, o que dificulta a expansão de novos empreendimentos

No Amazonas, a penetração do gás natural apresenta diversos benefícios, tais como:

Substituição do diesel e óleo combustível na geração elétrica e na indústria

Substituição da gasolina pelo GNV

Substituição do GLP na indústria e nos segmentos residencial e comercial

- Redução das emissões de CO₂ e da poluição atmosférica local
- Redução do desmatamento para produção de lenha para uso na indústria
- Melhora da segurança do abastecimento em sistemas isolados
- Redução de custos de energia, dados os preços mais elevados dos derivados de petróleo, principalmente considerando a difícil logística de suprimento

A substituição de combustíveis líquidos por gás natural em Manaus resultou em uma redução de 73% na poluição causada por particulados e cerca de 37% na emissão de GEE O gás natural é o combustível de transição para uma matriz energética mais sustentável e diversificada no Amazonas, pois permite reduzir custos e emissões em comparação ao diesel, além de superar desafios de outras fontes energéticas

Óleo diesel

- O gás natural contribui para reduzir as emissões de GEE em até 50%, em relação à geração termelétrica a diesel, além de atenuar a poluição atmosférica
- O gás natural desonera a indústria e subsídios, devido a sua competitividade econômica em relação ao diesel
- A exploração dos recursos locais de gás natural reduz a logística de movimentação de diesel para o interior de Manaus, que envolve o acesso a rios

- Necessidade de condições de clima e solo apropriadas para culturas agrícolas com escopo em bioenergia
- Produtividade das culturas depende do uso de fertilizantes e pesticidas, podendo impactar o solo e recursos hídricos
- Requer extensas áreas de cultivo, gerando desafios relacionados a desmatamento, uso do solo e interseções com comunidades locais ou áreas indígenas

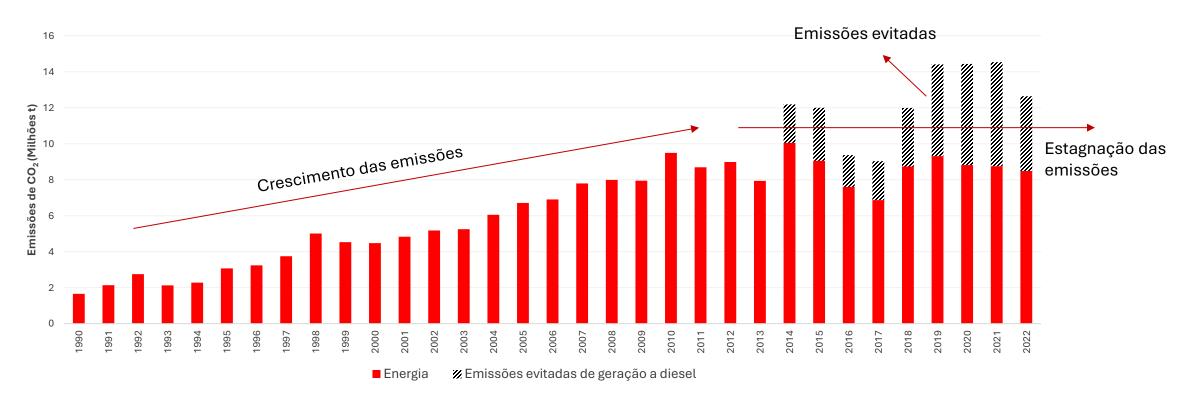
Solar

- Possui baixa densidade energética, tal como a biomassa
- Fazendas solares de grande porte requerem áreas significativas
- Isoladamente, não garante segurança energética e elétrica

Para se ter a mesma garantia física das UTEs no Amazonas, seriam necessários

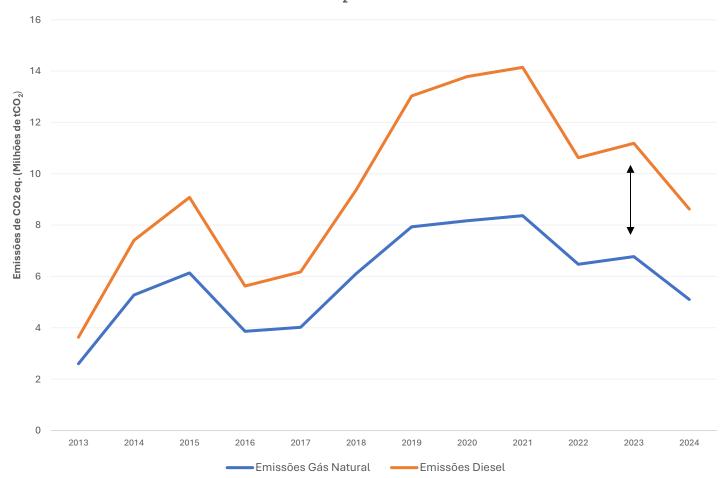
118 km² de área para instalar 6 GW de energia solar,

enquanto o gasoduto Urucu-Coari-Manaus teve um impacto de apenas



A inserção do gás natural na matriz energética no Amazonas foi determinante para frear o crescimento das emissões de GEE, que se estabilizaram em uma média de 8,7 Mt CO₂eq entre 2010 e 2022, evitando cerca de 50% das emissões projetadas para o período

Emissões brutas de CO2 no estado do Amazonas


Fonte: Elaboração própria a partir de dados de SEEG (2024) e CCEE (2024)

O uso gás natural no Amazonas evitou a emissão de 4,41 milhões de toneladas de CO₂ em 2023, representando uma redução de 37% em relação ao cenário baseado em diesel

Geração termelétrica a óleo diesel

112 milhões de tCO₂ Geração termelétrica a gás natural

70 milhões de tCO₂

Uso do gás natural permitiu a redução de

37% das emissões de CO₂

em comparação ao diesel

Valores absolutos de redução nas emissões:

41 milhões de tCO2 entre 2013 e 2024

4,41 milhões de tCO2 no ano de 2023

Fonte: Elaborado a partir dos dados IEMA, ONS e CCEE

Análise dos Impactos Socioeconômicos

A indústria do gás natural no Amazonas já atraiu cerca de US\$ 7,4 bilhões em investimentos — o equivalente a R\$ 38 bilhões — em infraestrutura, produção e geração de energia

Segmento	Valores estimados (Milhões US\$)	Valores estimados (Milhões R\$)	Considerações
Exploração e Produção	1.265	6.603	Investimentos realizados nas Bacias do Solimões e Amazonas a partir de 2007
Geração termelétrica a gás	1.266	6.488	Conversões de termelétricas, baseado no investimento da Petrobras em 2010, ajustado pelo CPI para 2023
Distribuição de gás natural	181	926	Investimento acumulado na rede de distribuição da Cigás (281 km) até 2023, com valores corrigidos pela Selic conforme metodologia da distribuidora
UPGN de Urucu (12,2 milhões m3/d)	1.240	6.194	Investimento de US\$ 137 milhões no módulo UPGN-IV (1,8 milhões m³/d), anunciado em 2014, extrapolado para a capacidade total de 12,2 milhões m³/d, ajustado pelo CPI para 2023
Azulão-Jaguatirica	370	1.838	Investimento de R\$ 1,8 bilhões relativo ao projeto integrado da ENEVA, ajustado pelo CPI para 2023
Gasoduto Coari-Manaus	3.155	16.168	Investimento de R\$ 4,5 bilhões em 2009, ajustado pelo CPI para 2023
TOTAL	7.477	38.217	

A indústria de gás natural tem se consolidado como motor de desenvolvimento no Amazonas, gerando empregos, atraindo investimentos e ampliando a arrecadação pública

- Arrecadação de tributos e outras receitas governamentais do petróleo e gás (Royalties e Participações Especiais)
- Geração de empregos na construção de infraestruturas e na operação dos ativos
- Redução dos elevados custos energéticos, através do uso do gás natural para geração elétrica, na indústria e no setor de transporte
- Atração de investimentos de empresas nacionais e estrangeiras para exploração e desenvolvimento de reservas de gás natural e a infraestrutura associada

Os investimentos na cadeia do gás natural contribuem para gerar empregos em região com elevado nível de pobreza

Gasodutos Coari-Manaus: cerca de 6,82 mil empregos diretos no pico da construção e 19,6 mil empregos indiretos (Agência Brasil, 2008)

Termelétricas: cerca de 3 a 4 mil empregos diretos na construção

Projeto UTE Azulão 950 (início de operação previsto para 2026): geração de 4 mil empregos no pico da obra (ENEVA, 2023)

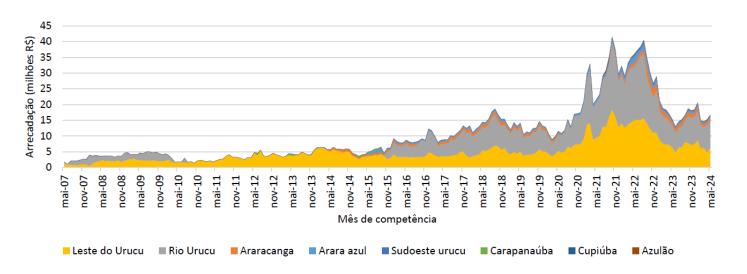
A produção de óleo e gás natural representa uma importante fonte de arrecadação fiscal para os municípios e o Estado do Amazonas

Em 2023, os municípios e o Estado arrecadaram cerca de **R\$ 450 milhões** em royalties do petróleo e do gás natural.

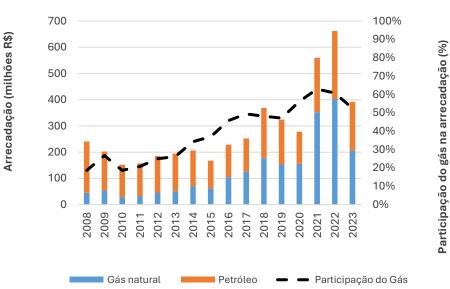
O gás natural representa mais da metade da arrecadação total de royalties no estado. A receita de royalties do gás natural tem ganhado relevância ao longo dos anos, dado o crescente consumo e a expansão do mercado de gás no Brasil.

Além disso, a produção e comercialização do gás natural gera uma arrecadação de impostos relevantes para o Estado e o governo federal (ICMS e PIS-Cofins).

Os royalties do gás natural representam uma fonte estratégica de receita para o Amazonas, com potencial para garantir estabilidade fiscal e impulsionar o desenvolvimento econômico e social da região


Antes da operação do Gasoduto Urucu-Coari-Manaus, a arrecadação de royalties da produção de gás natural no Amazonas não ultrapassava R\$ 5 milhões por mês.

Após 2010, essa arrecadação aumentou significativamente devido ao crescimento da produção de gás e às variações no Preço de Referência do Gás Natural (PRGN), especialmente dos campos Leste do Urucu e Rio Urucu.


Desde 2016, os royalties do gás natural representam cerca de 55% da arrecadação dos campos do Amazonas. Isso se deve à estabilidade da produção de gás, enquanto a produção de petróleo está em declínio.

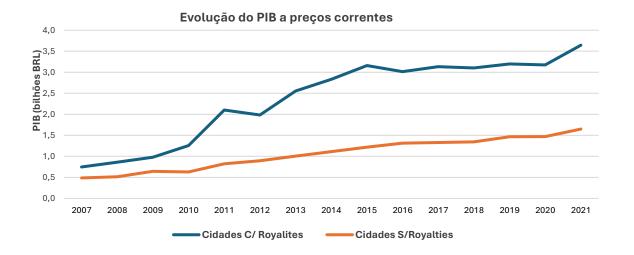
Em alguns anos (como 2022), a participação do gás natural superou 90%, impulsionada pelo aumento dos preços do gás no mercado internacional.

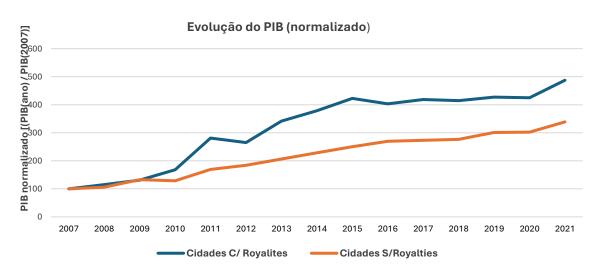
Royalties da produção de gás natural em campos no AM

Arrecadação de royalties em campos no AM

Fonte: elaboração a partir de dados da ANP (PowerBI, Royalties, PRGN)

A operação do gasoduto Coari-Manaus viabilizou a oferta de gás natural, impulsionando o crescimento econômico dos municípios beneficiados por royalties, com aumento expressivo do PIB no longo prazo em comparação aos demais

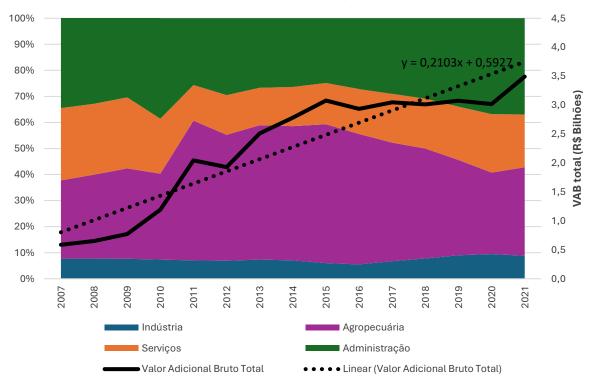




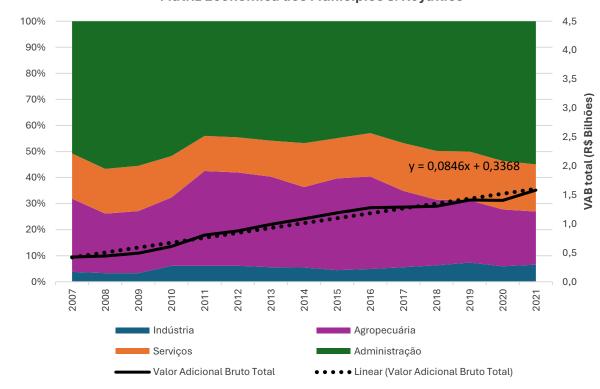
Cidades c/ Royalties	PIB (Bilhões 2021)	População (2021)
Codajás	R\$ 0,53	29549
Iranduba	R\$ 1,00	49718
Manacapuru	R\$ 1,5	99613
Anori	R\$ 0,25	21937
Anamã	R\$ 0,14	14292
Caapiranga	R\$0,18	13483

Cidades s/ Royalties	PIB (Bilhões 2021)	População (2021)
Uarini	R\$ 0,23	13939
Rio Preto da Eva	R\$ 0,41	34856
Borba	R\$ 0,40	42328
Novo Aripuanã	R\$ 0,25	26443
Boa Vista dos Ramos	R\$ 0,18	23785
Maraã	R\$0,18	18298

Fonte: elaborado a partir de dados do IBGE (2024)

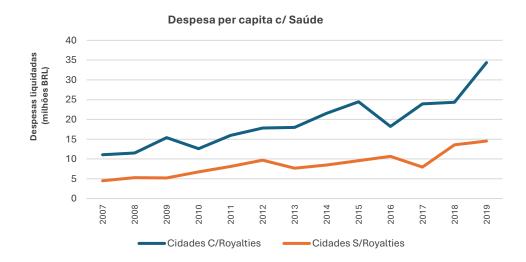


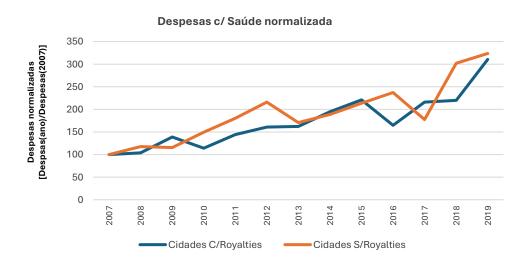
Royalties do gás natural impulsionam a diversificação econômica dos municípios, com crescimento do Valor Adicionado Bruto (VAB) em setores de maior valor agregado, como Indústria e Serviços

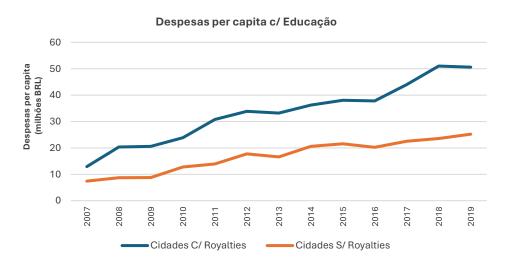


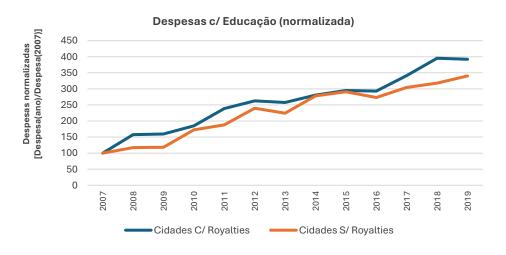
Matriz Econômica dos Municípios C/Royalties

Matriz Econômica dos Municípios S/Royalties




Fonte: elaborado a partir de dados do IBGE (2024)


Municípios que recebem royalties do gás natural investem mais em educação e saúde, com despesas adicionais de até R\$ 16 milhões e R\$ 10 milhões, respectivamente, em relação aos demais



Fonte: elaborado a partir de dados do FNDE (2024)

Municípios que recebem royalties do gás natural tendem a ocupar posições de destaque no ranking de desenvolvimento social, segundo o histórico do Índice de Progresso Social (IPS) Amazônia

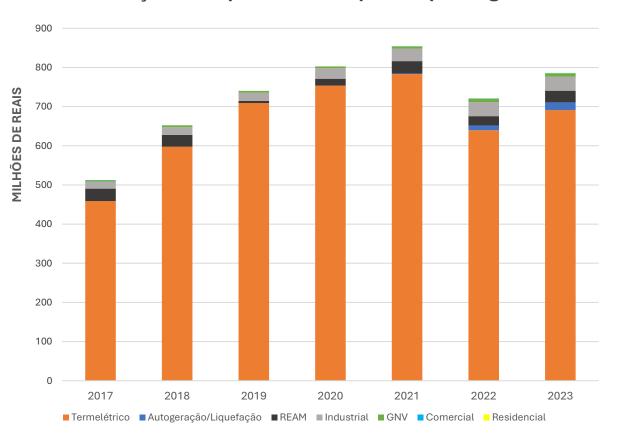
O IPS (Índice de Progresso Social) Amazônia congrega indicadores sociais e ambientais. A partir do seu histórico (2014, 2018, 2021, e 2023) para os 62 munícipios do Amazonas, observou-se que os 10 municípios de maior IPS envolvem, pelo menos, 60% de beneficiados por royalties, enquanto que dentre os 10 municípios de menor IPS mais de 70% não são beneficiados por royalties

O índice IPS abrange:

- 3 dimensões: Necessidades Humanas Básicas, Fundamentos para o Bem-estar e Oportunidades; e
- 12 componentes: Nutrição e Cuidados Médicos Básicos, Água e Saneamento, Moradia, Segurança Pessoal, Acesso ao Conhecimento Básico, Acesso à Informação e Comunicação, Saúde e Bem-estar, Qualidade do Meio Ambiente, Direitos Individuais, Liberdades Individuais e de Escolha, Inclusão Social e Acesso à Educação Superior

Municípios com maior IPS

Municípios com menor IPS


Rank	2023	Rank	2023
1	Manaus	53	Autazes
2	Urucurituba	54	Tabatinga
3	Novo Airão	55	Boca do Acre
4	Anori	56	Uarini
5	Itapiranga	57	Juruá
6	Parintins	58	Envira
7	Urucará	59	Tapauá
8	Itacoatiara	60	Apuí
9	Presidente Figueiredo	61	Pauini
10	São Sebastião do Uatumã	62	São Gabriel da Cachoeira

Em 2023, a venda de gás natural pela Cigás gerou uma arrecadação estimada de R\$ 786 milhões (USD 157,36 milhões) em impostos, reforçando a relevância econômica do setor para o Amazonas

Arrecadação total por ano de impostos por segmento

Setor industrial: R\$ 188 milhões

Setor termoelétrico: R\$ 4,6 bilhões

Setor de mobilidade (GNV): R\$ 38 milhões

Setor comercial: R\$ 4,2 milhões

Setor residencial: R\$ 1,3 milhões

Setor de liquefação: R\$ 33 milhões

Refino (REAM): R\$ 170 milhões

Valores para o período de 2017 a 2023.

Fonte: Elaboração própria a partir dos dados de consumo de gás industrial da Cigás, consumo da REAM fornecido pela ANP

O gás natural proporcionou uma economia de R\$ 75 bilhões na geração de energia elétrica, com custos de R\$ 44 bilhões entre 2013 e 2024, comparado ao custo potencial de R\$ 120 bilhões caso o parque termelétrico do Amazonas fosse 100% a óleo diesel

Custo da geração térmica a diesel*

R\$ 120 bilhões

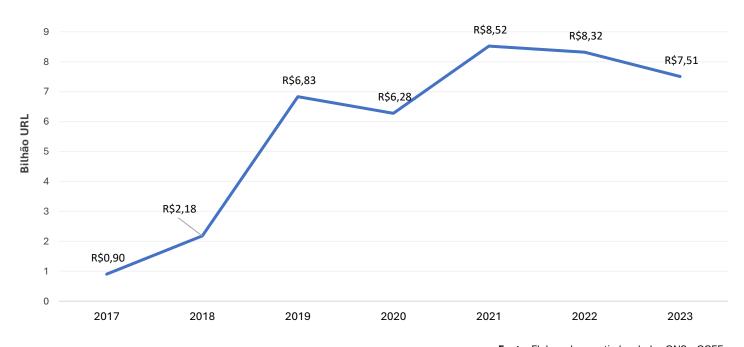
2013 - 2024

*Cenário hipotético

Custo da geração térmica a gás

R\$ 44 bilhões

2013 - 2024


Custo evitado de

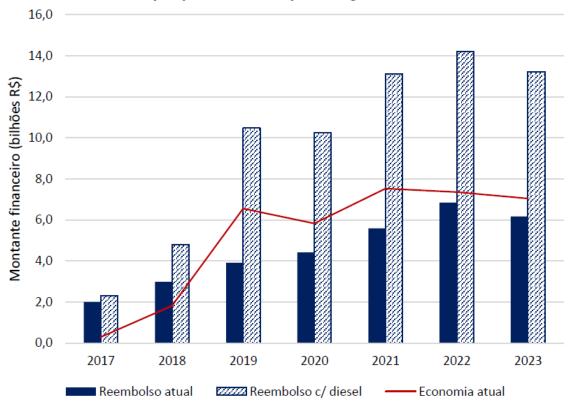
R\$ 75 bilhões

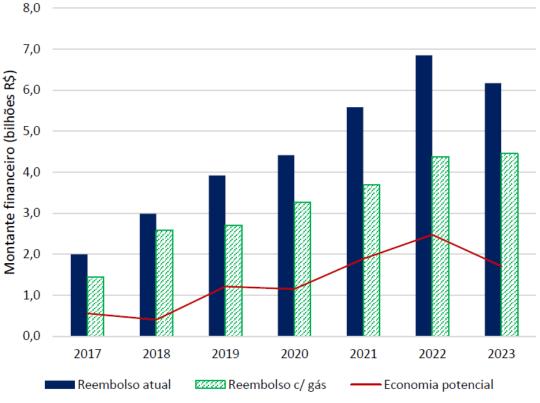
ou uma economia média de

R\$ 6,25 bilhões por ano

Estimativa do custo anual evitado pelas térmicas a gás no Amazonas

Fonte: Elaborado a partir dos dados ONS e CCEE


O uso de gás natural na geração elétrica do Amazonas já reduziu os subsídios da CCC em cerca de R\$ 7 bilhões — e a conversão total das usinas a diesel pode gerar economia adicional de R\$ 1,7 bilhão


A geração termelétrica no Amazonas recebe subsídios do Conta de Consumo de Combustíveis (CCC), que foram reduzidos graças ao uso de gás natural em vez de diesel, gerando benefícios socioeconômicos a nível estadual e federal

Reembolsos da CCC no estado do AM e economias proporcionadas pelo o gás natural

Fonte: elaborado própria a partir de dados da CCEE.

Potencial de economia na CCC diante da substituição da geração a diesel pelo uso de gás natural

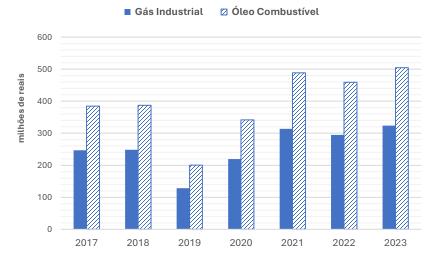
Fonte: elaborado própria a partir de dados da CCEE.

Em 2023, o uso de gás natural no Amazonas gerou mais de R\$ 300 milhões em economia nos segmentos industrial, de transporte e residencial — reforçando sua eficiência como fonte energética

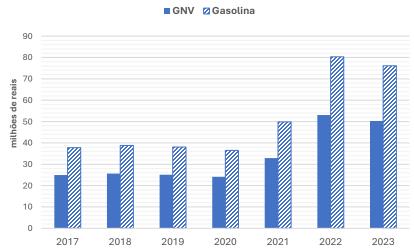
Em 2023, o uso do gás natural nos segmentos industrial, de mobilidade e residencial e comercial, gerou economias de

R\$ 180 milhões

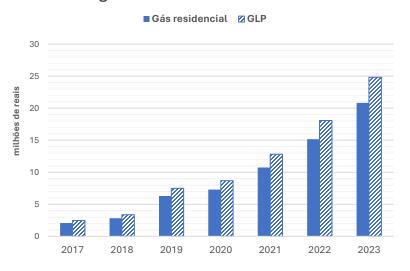
ou **35**% das despesas com óleo combustível



ou **33**% das despesas com gasolina



ou **16**% das despesas com GLP


Custo Gás Natural x Óleo Combustível no segmento industrial

Custo GNV x Gasolina comum no segmento de mobilidade

Custo Gás Natural x GLP nos segmentos residencial e comercial

Fonte: Elaboração própria a partir dos dados de consumo de gás industrial da Cigás, dados de consumo da REAM fornecido pela ANP e MME

Avaliação dos impactos ambientais, econômicos e sociais da não utilização do gás natural no Amazonas

A substituição do gás natural por óleo diesel na geração elétrica até 2040 implicaria um custo adicional de R\$ 7 bilhões e 101 milhões de toneladas extras de CO₂ — um aumento de 40% nas emissões de gases de efeito estufa

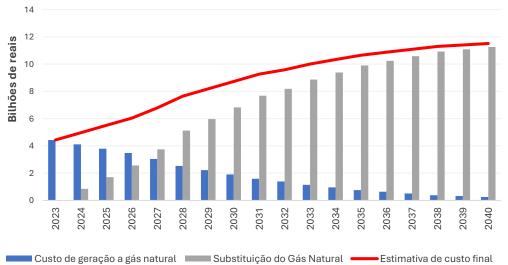
11,5 **R\$/bilhões**

Custo da geração térmica a diesel em 2040

+ 7,0 R\$/bilhões

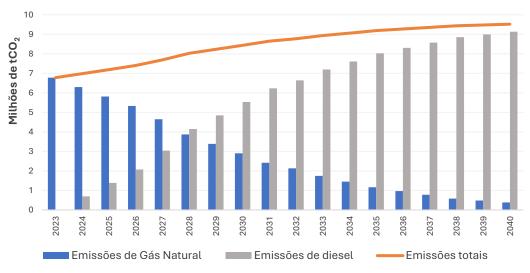
Ônus da conversão termelétrica do gás para o diesel

101 milhões de toneladas


Emissão de CO2 adicional entre 2023 e 2040

1,8 US\$/bilhões¹

Valor das emissões totais


¹18 USD/tonCO2 (RenovaBio, 2025)

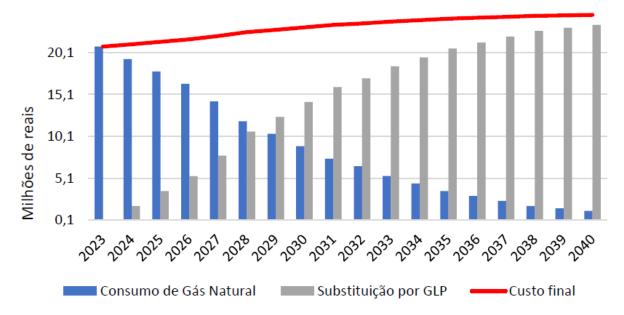
Estimativa do Custo da Geração Termelétrica

OBS: Análise com base nos dados de redução de oferta de gás natural da EPE e de geração termelétrica em 2023. Não foram considerados aumentos da demanda termelétrica e correção de valores por inflação.

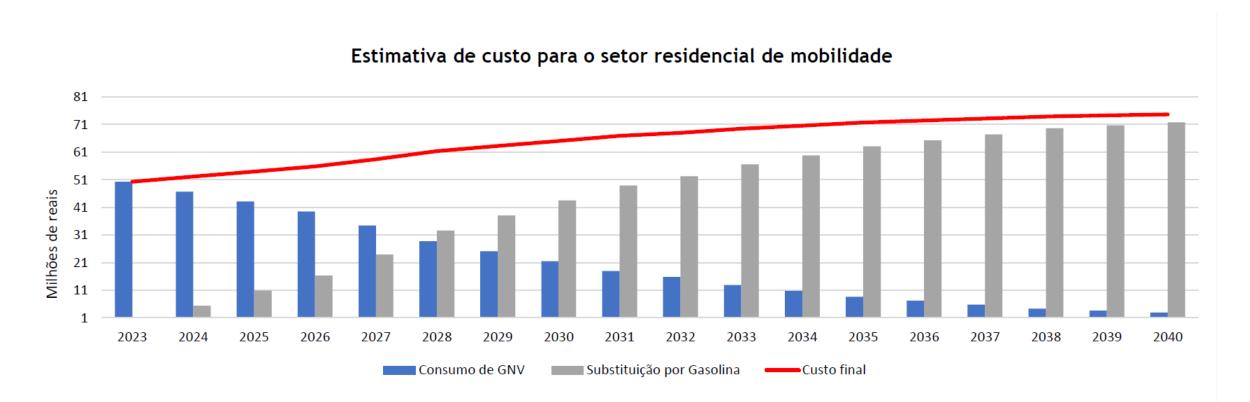
Estimativa de Emissões de GEE

OBS: Análise com base nos dados de redução da oferta de gás natural da EPE. Considera apenas a conversão das termelétricas a gás natural atuais.

A substituição do gás natural por óleo combustível e GLP até 2040 elevaria os custos energéticos em 52% para a indústria e 18% para o setor residencial, em comparação com 2023



Estimativa de custo para o setor industrial


Estimativa de custo para o setor residencial

Fonte: elaboração própria a partir de dados da EPE, CCEE e MME (2024)

Fonte: elaboração própria a partir de dados da EPE, CCEE e MME (2024)

A ausência do gás natural no Amazonas acarretaria custos econômicos de pelo menos US\$ 1,8 bilhão — incluindo perdas com arrecadação, aumento nos custos de geração elétrica e no fornecimento de energia

Segmento	Valores estimados (Milhões US\$)	Valores estimados (Milhões R\$)	Considerações
Custo das emissões evitadas	121	613	Emissões evitadas pelo uso do gás natural em comparação ao diesel. US\$ 18/tonCO2 (CBIO).
Arrecadação de royalties	43	209	Arrecadação pela exploração do gás natural no território do Amazonas
Diferença custo de geração a gás natural x diesel	1.574	7.507	Custo ajustado pelo CPI para 2023
Diferença custo do gás natural x óleo combustível para a indústria	38	180	Custo ajustado pelo CPI para 2023
Diferença consumo GNV x Gasolina comum	5	26	Custo ajustado pelo CPI para 2023
Diferença consumo Gás x GLP residencial e comercial	0,8	4	Custo ajustado pelo CPI para 2023
Custo de descomissionamento do gasoduto Urucu-Coari-Manaus	377 – 1.700	1.900 – 8.600	Descomissionamento de gasodutos em área ambientalmente sensíveis varia de 12% a 53% do investimento
TOTAL (sem descomissionamento)	1.781,8	8.539	

Conclusões

- A indústria de gás natural impulsionou o **desenvolvimento socioeconômico** do Amazonas, garantindo **segurança energética**. Além disso, proporciona **benefícios econômicos e ambientais**, com investimentos estimados em US\$ 5,8 bilhões relacionados ao gasoduto Coari-Manaus até o momento.
- Tomando como base o ano de 2023, a indústria de gás natural contribuiu com economias na ordem de US\$ 1,7
 bilhões/ano e evitou a emissão de 4,4 milhões/t CO2eq comparado ao uso de termelétricas a diesel.
- A manutenção dos benefícios da indústria de gás natural após 2030 depende do desenvolvimento do projeto de Juruá
 e da exploração de novos recursos contingentes de petróleo e gás.
- O desmantelamento da indústria de gás natural pode gerar custos de até US\$ 1,7 bilhões, impactos ambientais
 relacionados ao descomissionamento de infraestruturas e comprometer medidas compensatórias atualmente
 vigentes.

